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ABSTRACT

This technical note describes the principles governing superdirective

antennas and the factors limiting their realization. A criterion for
determining the minimum distance to the far field of aperture antennas,
including superdirective antennas, is presented. Under this condition it is
shown that, at least for the marginally superdirective case, such antennas do
not exhibit large Fresnel regions as compared with uniformly phased
apertures. A modified criterion is also presented which defines the minimum
distance to the far field in a given direction. Under this criterion it is
shown that for the uniform distribution, the antenna pattern near nulls
requires a large distance to converge to the far field form. This work has

applications in determining antenna test range requirements.

RESUM6

Cette pr~sente note technique d6crit les principes r6gissant les antennes
superdirectrices et les facteurs limitant leur r~alisation. Un crit~re est
pr~sent6 pour d~terminer la distance minimum au champ lointain pour les

antennes d'ouverture ainsi que pour les antennes superdirectrices. Dans cette
condition on d~montre que, du moins en ce qui concerne le cas d'une
superdirectivit6 marginale, ces antennes ne d~ploient pas une grande r6gion
Fresnel en comparaison avec les ouvertures phas~es uniform~ment. Un cirt~re
modifi6 est 6galement pr6sent6 d~finissant la distance minimale au champ
lointain pour une distribution uniforme, les z~ros du diagramme polaire de

gain de l'antenne repr6sentent les directions oii les distances minimales au
champ lointain sont les plus grandes. Ce travail peut s'appliquer L la
d6termination des conditions requises pour un champ d'essai d'antennes.
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EXECUTIVE SUMMARY

This investigation defines and describes superdirective aperture
antennas. Several criteria are proposed for determining the maximum range of
the Fresnel region of aperture antennas, and one is selected as best indexing
this range. The selected criterion is based on a mean-squared convergence of
the finite range pattern to the far field pattern. Using this criterion, the
hypothesis that superdirective aperture antennas can exhibit a large Fresnel
region is disproved, at least for the case of marginal superdirectivity.
Application of this criterion over only a small sector of the antenna pattern
shows that the nulls of a uniform aperture pattern converge to the far field
form at relatively large range from the antenna. Also, apertures which are
heavily weighted at the edges have a relatively large Fresnel region.
Aperture distributions which are tapered at the edges have a relatively short
Fresnel region.
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1.0 INTRODUCTION

1.1 Background

The limitations of representing the physical world with mathematical
models and relationships are well known, and the field of antenna theory is no
exception. Although Maxwell's equations describe the variation of
electromagnetic fields in time and space, mathematical approximations must
generally be made to these expressions in order to formulate the relationships
in a useful and tractable way. When considering the radiated (and
non-radiated) fields of an aperture antenna, various approximations may be
made in describing the radiation pattern, depending on the range from the
antenna at which the radiation pattern is to be represented. There are
generally three distinct regions over which the antenna pattern may be
expressed in different forms, defined by the approximations which may be made
to the solutions to Maxwell's equations. The region close to the antenna is
known as the near field, in which reactive energy and boundary conditions
around the antenna dominate. At slightly larger range, the Fresnel region is
defined. The radiation pattern in the Fresnel region is dominated by the
geometrical effects of the size of the antenna, and results in a radiation
pattern which changes shape (as well as intensity) as a function of range. At
very large range, the antenna may essentially be treated as a point source
radiator. The far field is defined to include ranges over which the radiation
pattern changes only in intensity (not in shape) as the range varies. The
approximations which dominate in each of the regions blend into one another so
it is difficult to delineate, in a rigorous fashion, where one set of
approximation breaks down and another set begins to apply.

This investigation is concerned with the transition between the Fresnel
region approximations and the far field approximations in representing the
radiation pattern of an aperture antenna. The minimum distance to the far
field is known to be a function of several variables including the physical
aperture size and the aperture excitation. Superdirective antennas are of
particular interest in this investigation because they have unusual aperture
excitations which may influence the minimum distance to the far field. The
excitation of these apertures produces a radiation pattern in visible space
which has a directivity which excedes that of a uniformly excited aperture,
which is the most directive completely real aperture excitation.

The purpose of this investigation is to derive a quantitative definition
of the extent of the Fresnel region of an aperture antenna, and apply that
definition to determine the extent of the Fresnel region of a superdirective
aperture antenna. This definition of the extent of the Fresnel region is
consistent with aperture dimensions, aperture excitation, and accurately
reflects the degree of convergence of the antenna pattern, over the visible
region, to the far field form. There is some evidence to suggest that the
minimum distance to the far field for superdirective antennas may be large
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relative to that of apertures having completely real excitations. This will
be discussed in a following section. For such antennas, geometrical
considerations may not be the dominant factor in determining the extent of the
Fresnel region. An investigation of these effects is important because it
provides insight into the properties of superdirective antennas, and serves to
expose the practicality (or lack thereof) and desirable attributes of
realizing such antennas. This investigation also has applications concerning
the minimum test range distance requirements for specific aperture antennas.

1.2 Technical Note Organization

Broadly speaking, this investigation is divided into two parts. The
first deals with the definition, description, and realization of
superdirective aperture antennas (sections 2 and 3), while the second part
deals with the development of a quantitative definition of the minimum
distance to the far field for a specific aperture distribution (sections 4, 5,
and 6).

Section 2 presents the concept of describing the fields around an
aperture antenna as a spectrum of plane waves. It also includes a discussion
of admissible complex angles of propagation around an aperture, in the context
of a plane wave spectrum.

Section 3 introduces the notion of superdirective aperture antennas, and
describes the synthesis of such aperture excitations. The supergain factor is
presented as a design aid, and some of the design constraints inherent to
ensuring a realizable superdirective aperture are discussed.

Section 4 begins the second part of the investigation, and includes a
derivation of the Fresnel kernel used in forming an approximate description of
the fields in the Fresnel region of an aperture antenna. The conventional
definition of the minimum distance to the far field, based on geometrical
considerations alone, is derived. Three alternative criteria are presented
for quantitatively defining the outer extent of the Fresnel region, along with
an evaluation of the relative merit of each criterion. One of the three
proposed criteria is selected as more appropriate to the investigation than
the others, based on consistency, usefulness, and in reflecting the dependence
of the extent of the fresnel region on the aperture excitation.

Section 5 presents an alternate form for the phase-sensitive
mean-squared difference criterion. This leads to a discussion of a synthesis
equation for specifying the minimum distance to the far field for an antenna.
The relationship observed between half power beamwidth (HPBW) and the minimum
distance to the far field (as determined by the phase sensitive criterion) is
discussed.

Section 6 includes a discussion of radiation polarization and its effect
on the validity of the mean squared difference criterion. Also, a modified
mean squared difference criterion is introduced which is applied over only
part of the radiation pattern. The fundamental properties of this new
criterion are exposed by considering a special application to the case of a
uniform aperture.
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Section 7 is comprised of recommendations for further work in this
area.

Section 8 summarizes the investigation.

2.0 DESCRIPTION OF APERTURE ANTENNA FIELDS

The electromagnetic fields associated with a radiating antenna may be
represented as an angular spectrum of plane waves. This approach was first
described in a paper by H. G. Booker and P. C. Clemmow [i]. Because of the
relevance of this approach to further discussions, the plane wave spectrum
approach is now developed, following the original paper.

Following Booker and Clemmow, several simplifications are adopted. Fig.
1 shows a diagram of a one-dimensional (line source) aperture antenna
radiating into a half space x > 0. The electromagnetic fields are assumed to
have a time harmonic variation, and the radiation pattern is represented in
only a single plane. The magnetic field vector is taken parallel to the
z-axis. By using Maxwell's equations, the charge and current conditions on a
boundary of the source-free half space, and a specified time variation, the
electromagnetic field throughout the half space may be determined. Simple ray
tracing can be used (see fig. 2) to determine the phase of the contribution to
the electromagnetic field from a Huygens source on the aperture to the phase
of the total field at point P may be determined. Taking k as the free space
vector propagation constant (21/-X), the phase at point P is given by

= e jk(xcosO + ysinO) (i)

where

R = (xcos0 + ysin0) (2)

or alternatively

= ej(xkx + yky) (3)

where k. and ky are the vector components of the propagation constant.
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As stated previously, the fields in the half space x > 0 are completely
determined by the tangential field components on the aperture, considering the
half space to be source free. The fields in the half space may be generally
be written as:

-jk(xcosO + ysin0)

E(x,y) = A(-sinO, cosO, O)e (4)

-jk(xcosO + ysinO)

H(x,y) = nA(0,0,1)e (5)

where A(x,y,z) is an amplitude function of the three unit vectors. Note that,
from fig. 1, the tangential component of the E field on the aperture is
related to the cosine of the angle of propagation, and the component of the E
field normal to the aperture is related to the (negative of the) sine of the
angle. Setting x = 0 in eqns. (4) and (5) yields the expressions for the
fields in the aperture required to support the specified fields in the half
space. The expressions are:

-jyksinO
Ey = A(cosO)e (6)

-jyksin0
H(0,0,1) = Ae (7)

These expressions represent a wave travelling over the aperture in the
+y direction with vector propagation constant ksine. Because this is a
boundary condition, any such wave travelling over the aperture with vector
propagation constant ksine (or ky) leads to a plane wave travelling out of the
aperture at an angle defined by the vector propagation constant k of the
medium. The angle of propagation may be determined specifically be examining
the transverse electromagnetic (TEM) plane wave constraints:

(i) kx + ky =k

(ii) E . k = 0

(iii) H . k = 0

Considering that the E-vector is in the plane defined to be the half space,
condition (ii) may be expanded as:
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E.k = (Ex + Ey).(kx + ky) = Exkx + Eyky = 0 (7a)

Hence once Ex , Ey and ky are specified in the aperture plane, the value
of kx is also determined, and leads to a plane wave propagating out of the
aperture at an angle whose cosine is kx/x. It is now natural to ask what
values of ky are admissible in specifying the tangential fields of the
aperture (or alternately, what values of sine are admissible).

The wave equation may be written, for the two-dimensional (single plane)
case as:

@2F a2
2F + a2 + k2F = 0 (8)

which implies that

kx2 + ky2 = k2 (9)

Values of sine > I are admissible and correspond to imaginary values of cose.
Values of sine > I correspond to values of ky > k. A discussion of complex
angles of propagation is presented in Appendix A. The aperture component
(y-component) ky of the vector propagation constant is interpreted as the
change of phase of the wave per free space wavelength across the aperture.
For values of ky < k, the change of phase is less than 2r radians per
wavelength, corresponding to a plane wave propagating at some real angle 6
measured from the normal out of the aperture. However, values of ky > k
specify more than 21 radians of phase change per free space wavelength across
the aperture, implying a wave propagating in the aperture with a wavelength
shorter than that of free space. Since the phase velocity of a wave in the
aperture plane is given by:

v = Af = Aw 27rw w (10)

waves corresponding to ky < k propagate at velocities above the free space
value, while waves corresponding to ky > k are "slow" waves in the aperture,
propagating at velocities below the free space value (because the same time
harmonic variation applies in both cases).
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However, referring to eqns. (3) and (4), slow waves in the aperture lead
to a different kind of wave in the half space. Although sine is real, cose is
imaginary for values of sine > 1. This results in an exponential decay in the
amplitude of these waves with distance from the aperture. This is reflected
in the equations for the E and H fields in the half space, written below for
the case of ky > k:

E(x,y) = A(-sinO,cos ,O)e-k(sin2"l ) iXe- j y ky (l1)

H(x,y) = 7A(0,0,1)e-k(sin20"l)iXe - jy k (12)

These waves are known as "evanescent" or reactive waves, and do not
propagate away from the aperture. Rather, they travel in the plane of the
aperture. In summary, then, evanescent waves are slow moving, high frequency
waves which are exponentially damped in the direction out of the aperture, and
arise from considering all possible boundary conditions which could be imposed
at the aperture.

These evanescent waves are associated with energy storage around the
aperture. From the Poynting theorem, E X H gives the vector energy flow
associated with an electromagnetic wave. To determine this vector in the
context of this investigation, the Ex and Ey field components may be
considered separately. Ex X H yields the component of energy flow along the
y-axis. Ey X H yields the vector of the energy leaving the aperture in the
x-direction. However, as can be seen from eqn. (3), E y is related to the
cosine of the angle of propagation of the wave out of the aperture. For
evanescent waves, cose is imaginary, and so the component of the E field in
the plane of the aperture is in time (or space) quadrature with the H field.
Fig. 3 shows the instantaneous Poynting vector for the case of quadrature E
and H fields. Ex X H changes direction every 1/4 cycle, and there is no net
energy propagated away from the aperture. Rather, energy surges back and
forth between electric and magnetic fields in front of the aperture. If
evanescent waves are included in the distribution of aperture electromagnetic
fields, it becomes clear that any time varying aperture distribution can, by
Fourier analysis, be decomposed into a spectrum of sinusoidal waves
propagating over the aperture. The evanescent waves are necessary in
describing details of the aperture distribution which are finer than the free
space wavelength. Since each harmonic in the aperture leads to a plane wave
in the half space radiating at some angle dependent on the propagation
constant of the harmonic, any arbitrary field distribution in the half space
can be described as an angular spectrum of plane waves (Woodward and Lawson,
[21). The summation of these plane waves in the half space corresponds to
integration over all harmonics in the aperture distribution-that is, over all
possible values of ky. Following Booker and Clemmow, arbitrary fields in the
half space can be represented by the expressions below:
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E(xy) = A I P(sinO)(-sinO,cosO,O)e - jk(xcosO + ysinO)dsinO (13)
M Cos9

H(x,y) = , 7 P(sinO)(O,O,1)e - j k xcosO + ysinO)damO (14)
cos 9

where

P(sinO) = (A)CA(sinO) (15)

since "A" is a function of the particular harmonic, ie. a function of sinO (or
ky). The aperture distribution, completely specified by the electric field,
is given by setting x = 0:

E(O,y) = + J P(sinO)e-JykydsinO (16)

This is a Fourier Transform expression.

As an aside, when the radiation pattern is described as the Fourier
Transform of an aperture distribution, the pattern over -1 < sine < +1 (or -k
< ky <+k) is said to lie in the visible region, since these values of sine
correspond to real angles. The pattern over the remaining sine axis is said
to lie in the invisible region. Understanding that the waves propagating at
these (complex) angles are exponentially damped with range from the aperture
gives a literal meaning to the pattern in the "invisible" region - these waves
are invisible in that they do not propagate to the far field.

2.2 Discussion of Complex Angles of Propagation

As stated previously, the wave equation does not restrict values of sinO
to lie between +1 and -1. Thus values of sine > I or sinO < -1 correspond to
imaginary values of cose and complex angles of propagation. However, it does
constrain the range of admissible complex angles. Suitable boundary
conditions must be used to investigate the constraints on these complex angles
of propagation.

- 10 -



Firstly, sine must be real, but otherwise may take any value. If sine
were imaginary or had an imaginary part, the eJkyy would have an exponential

real part, and the field amplitude would go to infinity in either the +y or -y
direction. Also, the cosG term must not have any positive imaginary part. A
positive real part implies that the field amplitude goes exponentially to
infinity in the +x-direction. If the complex angle of propagation is defined
as e = (a + jb), all admissible and inadmissible values of sine may be
represented by considering the four sign permutations of a and b:

sinO = eO - (17)j-

or, for (a + jb):

ebb cs(8sin8 = e-b(cos(a) +j j sin ( a ) ) +eb(cos(a)2- jsin(a)) (18)

which may be written as:

sinO = eb _ e-b)cs(a) + (e-b + eb)sin(a) (19)2 +2

The constraint that sine has no imaginary part implies that a = V/2 or
-v/2, unless b = 0. If b = 0 the angle of propagation is completely real, and

sine ranges between -1 and +1. The sign permutations of the complex angle
gives values of sine as:

(+ jb) ........... sinO = (e-- b + eb)/2 = cosh(b) (20)

( -jb) ........... sinO = (e- b + eb)/ 2 = cosh(b) (21)

+ jb) ........... sinO = -(e - b + eb)/2 = -cosh(b) (22)

jb) ........... sinO = -(e - b + e b)/2 = --cosh(b) (23)

To determine further constraints on the complex angle, values of cosO
must be examined for the sign permutations of a and b. Recall that the

existing constraint is that if b is nonzero, a = +ir/2. Cose is defined as:

- 11. -



COS = eJO + e-jo (24)

or, substituting (a + jb) for the complex angle of propagation:

Cos0 = (e-b + eb)cs a+ (e- b _ eb)sin(a) (25)2 +2

and the permutations give:

(.-jb) ........... cos0 = -j(e b - e = -jsinh(b) (26)

(7- jb) ........... cos0 = j(eb e-b)/2 = jsinh(b) (27)

+ jb) ........... cosO = j(eb e-)/2 jsinh(b) (28)

Tb

(-'-jb) ........... cosO = -j(e be-b)/2 = -jsinh(b) (29)

Recalling that cose may not have a positive imaginary part,

(a + jb) and (a - jb) are inadmissible complex angle of propagation. A
similar discussion may be found in Woodward and Lawson [2]. Following
Woodward and Lawson, a diagram of the contour of admissible angles in the

complex plane is shown in fig. 4.

The above discussion lends insight into the nature of the invisible
region of the radiation pattern and evanescent waves. From eqn. (4), the
amplitude weighting of the components of the electric field are functions of
the angle if propagation resolved on the unit vectors, as:

A = A(-sinO, cosO, 0) (30)

The invisible region includes, by definition, values of -1 > sine >+I,

and in this region sine may be written as +cosh(b) and cose may be written as
-jsinh(b). Thus the amplitude of the aperture fields may be written as,
referring to eqn. (15):

A = A(* cosh(b), -jsinh(b), 0) (31)

- 12 -
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By definition, cosh(b) and sinh(b) increase exponentially with
increasing b. This means that the fields in the aperture plane required to
support the evanescent waves increase exponentially as the waves become more
evanescent, that is, as one moves farther into the invisible region.

3.0 THE SUPERDIRECTIVE ANTENNA

3.1 Superdirectivity

An antenna whose directivity is greater than that of a uniformly
illuminated aperture is said to be superdirective. For the case of a uniform
phase aperture distribution, the uniform amplitude distribution yields the
highest directivity. This may be shown analytically using the Cauchy-Schwartz
inequality and the expression for directivity. Directivity is defined as the
maximum radiation intensity per unit solid angle, normalized to average
radiation intensity.

G 41rL E(x,y)dxdyI2 (32)A I I2 E(x,y) I2dxdy

The Cauchy-Schwartz inequality given as:

I f fgdxdyI 2 < f2dxdy f g2dxdy (33)

Thus, using eqn. (32), an aperture width of A, and letting f(x,y) = i:

If E(x,y)dxdy1 2 < A f IE(x,y)I 2dxdy (34)

and the uniform case yields the highest directivity.

However, Woodward and Lawson [21 outline a synthesis procedure by which
any arbitrary radiation pattern may be realized. The procedure was originally
suggested in 1943 by Schelkunoff [3], who showed that the power gain of a
linear array could be theoretically increased indefinitely, provided the
number of elements in the array is correspondingly increased without
increasing the length of the array. In 1948, Riblet [41 concluded that the
directivity of a two dimensional current distribution could likewise be made
arbitrarily large.

Fundamental to the concept of superdirectivity is that, while the
radiation pattern is defined over the entire real sine axis, the visible
region (or that part of the pattern which constitutes the far field) lies only
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over +1. Another important fact is that the aperture distribution
corresponding to a sum of radiation patterns is given by the sum of the
corresponding component aperture distributions (linearity of electromagnetic
fields in a reciprocal medium). Further, it is possible to specify an
infinite number of independent radiation patterns which can be realized by a
given finite aperture. Such radiation patterns which can be realized exactly
by finite length and finite energy apertures are known as "aperture limited"
functions (Rhodes, [51).

3.2 Superdirective Antenna Synthesis

A method for determining the aperture distribution required to
synthesize a superdirective radiation pattern will now be presented.
Following the method for synthesizing arbitrary radiation patterns laid out by
Woodward and Lawson, the desired radiation pattern is first specified at n
points over the visible region. To realize this, a sum of appropriately
weighted (independent) aperture limited functions is used. The composite
pattern has the form:

S
p = BAsPs (35)

where As values are found from the simultaneous equations arising from
specifying the desired radiation pattern at s discrete points. Woodward and
Lawson offer no proof that as the number of specified points increases the
composite pattern converges to a smooth curve, but rather rely on intuition
and worked examples. They observe that as one attempts to force the composite
pattern to an arbitrary shape, the pattern in the invisible region becomes
greater. In the limit and in general, as the specified pattern is achieved,
the pattern in the invisible region tends to infinity. An alternate method of
synthesis was proposed by Rhodes [5] in which he came to the same conclusion.
Rhodes' method centres on achieving an arbitrary radiation pattern in a best
mean-square sense, subject to a constraint on the size of the pattern in the
invisible region. Rather than specifying the pattern at n discrete points, he
attempts to expand the desired pattern over the visible region in prolate
spheroidal wave functions.

To further illustrate and clarify the idea that the pattern becomes
large in the invisible region, an example is presented from Woodward and
Lawson. The independent component patterns are chosen as the following
function evaluated at integer values of s:

ps(sinO) = sin ( W(sino - S /W) (36)
= W( S in0- s/W)
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where W is the aperture width in wavelengths.

The desired radiation pattern is specified at values of

sinO = r/W (37)

where r takes positive and negative integer values. The simultaneous
equations for the weighting coefficients take the form:

S
p(r/W) = E AsPs(r/W) (38)

and using the orthogonality of sine functions, these reduce to:

Ar = p(r/W) (39)

The composite (desired) radiation pattern thus has the form:

p(sin9) = Ep(S) sin (irW(sinO - s 1W) (40)w sW(Sinu - S/W)

Fig. 5 shows how the resulting radiation pattern is built up of the
component patterns, and how the maximum of each component lies on the zeros of
the other patterns. Thus if one wishes to specify the desired radiation
pattern at values between points at r/W, sidelobes of the component patterns
must be used, placing the main beam of these component patterns in the
invisible region. Although this can be done theoretically, control of the
visible region by using the sidelobes of patterns in the invisible region is
very weak. Large patterns result in the invisible region for only marginal
adjustments to the pattern over the visible region. This is illustrated by
the radiation pattern shown in fig. 6. From discussions in previous sections,
the pattern in the invisible region corresponds to evanescent waves and energy
storage around the aperture. Also, the electric and/or magnetic fields in the
aperture required to support these fields increase roughly exponentially
as one moves into the invisible region. For this reason, large patterns in
the invisible region generally mean that the specified aperture distribution
is unrealizable. Because of this, and coupled with the fact that control of
the visible region by patterns in the invisible region is so weak, it appears
that it is impractical to realize significantly superdirective aperture
distributions.
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FIG. 5: SYNTHESIZED RADIATION PATTERN
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3.3 Realizability and the Supergain Factor

Though superdirective apertures and apertures yielding patterns with
arbitrarily narrow beams are theoretically possible, they are generally
unrealizable for a number of practical reasons. The physical constraints of
realizing a superdirective antenna become severe very quickly as one attempts
to improve over the uniform case, so that even marginally superdirective
antennas are difficult to realize. The physical limitations include high
voltage and current requirements (with attendant high ohmic losses), large
amounts of reactive energy, critical tolerances on elements spacing and
phasing, narrow bandwidth, and low radiation resistance.

Specifically, in a note concerning the practical limitations of the
directivity of antennas, Wilmotte [6] references the design of an antenna
within I wavelength having a directivity comparable to an antenna 10
wavelengths long. However, its radiation resistance was calculated to be of
the order of a millionth of an ohm. Such a low radiation resistance means
that antenna efficiency is very low and most of the energy is being burned off
as heat rather than radiation. He notes that the radiation resistance remains
relatively steady for "conventional" designs (in a directivity sense) until
the directivity in increased beyond a certain point, after which the radiation
resistance falls off very quickly. Similarly Schelkunoff [7] notes that the
assertion that there is no upper limit on the directivity obtainable from a
linear array assumes there is no heat loss. He explains that a small
radiation resistance in an antenna at resonance can allow for large energy
storage (analogous to a resistor-capacitor-inductor circuit) and results in
reactive fields extending a large distance from the antenna. The notion of a
small radiation resistance is intrinsic to the idea of a superdirective
antenna. Further, Schelkunoff (71 concludes that detuned superdirective
antennas do not channel energy to themselves, and so reactive fields are
likewise intrinsic to superdirective antennas.

Taylor [8] in 1955 introduced a parameter intended to indicate the
practicality of a given design without the attendant complex calculations.
Taylor proposed the notion of a "supergain ratio", which is defined as:

aD

f f2dky
OD (41)
k
f f2dky

-k
A large supergain factor indicates an impractical design. The idea here is
that large amounts of stored energy around an aperture indicate an
unrealizable design, and the ratio can loosely be interpreted as

+ = i+ . (42)

where Pj is the net reactive power and Pr is the total radiated power. From a
discussion presented by Colin and Rothschild [9], a supergain factor only
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moderately greater than 1 does not necessarily imply a realizable design, but
a supergain ratio of much greater than 1 ensures an unrealizable one. This is
because P' is the net reactive power, and may be zero at resonance, since it
can be written as:

Pj = 2w(Wm - We) (43)

where Wm and We are the maximum stored magnetic and electric energies
respectively. Stored electric and magnetic energies are 1800 out of phase
with one another, so under conditions of resonnance the reactive stored energy
may be very large while Pj is zero, and hence the design would be
unrealizable. In answer to this problem, Rhodes [10] derived an expression
for the net "observable" stored electric and magnetic energies. The term
"observable energies" refers to the electric and magnetic energies which are
pumped into the volume around the aperture. Except in the case of resonance,
the volume around the aperture contains a surplus of either electric or
magnetic energy per cycle, and Pj represents this surplus. Rhodes derives
separate expressions for Wm and We, and defines Pj' as:

P = 2w(Wm + We) (44)

or, more explicitly,

2wW = kxF - ky- I dkydkx (45)2 = 1 ky2+kx2>k2 ky2+kx2,_k

2 wWm = 41r2 ky 2 + x 1 dkydkx (46)
2kZ fky 2+kx2>k2 ky+X

where Fy and Fx are defined as

Fy(ky,kx,k) = ]s Ey(xy,O)e ( y k y+ x k x ) dydx (47)

Fy(ky,kx,k) = 1Hfs Ex(x,y,O)e ( y k y + xk x ) dydx (48)
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for the general case of a two-dimensional aperture in the yz plane. This mean
that Taylor's supergain factor may be redefined using P-' rather than Pj, and
so is of greater design interest. However, two points gear special mention:
first, the supergain ratio remains a "figure of merit" for a prospective
design, useful primarily as a consistent means of comparing the desirability
of one design over another. Secondly, a large supergain ratio does not imply
a superdirective antenna. As stated previously, by superimposing translated
and scaled aperture limited patterns it is theoretically possible to
synthesize any desired radiation pattern shape over the visible region (or any
part thereof) at the price of generally increasing the stored energy around
the aperture (ie. the size of the pattern in the invisible region). This
statement holds true for arbitrarily obtuse radiation patterns as well as
superdirective ones (for instance, large reactive fields are expected in
attempting to synthesize a true isotropic source).

4.0 THE MINIMUM RANGE TO THE OUTER FRESNEL BOUNDARY

4.1 Definition of the Fresnel Region

Having described the notion of superdirective aperture antennas, an
analysis is now carried out to determine the extent of the Fresnel region of
such antennas. A general analysis of this problem for superdirective antennas
can be usefully applied to specific cases of marginally superdirective
antennas which can be realized, although strongly superdirective antennas may
not be realizable. The critical phasing of superidrective aperture antennas
suggest that such antennas may exhibit a large Fresnel region, compared to the
case of uniform phase apertures of comparable physical size. The Fresnel
region of an aperture antenna will now be defined and expressions for the
fields in this region will be derived.

The volume surrounding an antenna in a source free space has been
traditionally divided into three regions, in which various groups of
simplifications may be used in solving for the electromagnetic field
distribution. The Fresnel-Kirchoff scalar diffraction equation is an
approximation of the solution of Maxwell's equations around a radiating
aperture antenna, and may be used in calculating these fields. It is
expressed as:

1 e- j k r

F(Xyz) - rcos(n,r) - jkcos(n,s)}ddi7 (49)

The region very close to the aperture is known as the near field or
reactive field. No simplifications can be made to the Fresnel-Kirchoff
equation here. In fact, as Skolnik [11] points out, the scalar diffraction
equation is itself an approximation very close to the aperture because
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boundary conditions have been ignored. In this region the reactive field
dominates. This reactive or evanescent field dies out with increasing range
from the aperture. Beyond the range at which the reactive fields may be
ignored, the scalar diffraction equation may be simplified somewhat, defining
the Fresnel region of the antenna. The Fresnel region is characterized by the
fact that the shape of the radiation pattern is a function of distance from
the aperture. This effect is due to an effective phase curvature across the
aperture, arising from path differences across the aperture. In the far
field, the aperture can be treated as a point source, and the radiation
pattern does not change shape with increasing distance.

The expressions for the fields in the Fresnel region and far field are
of interest in this investigation. An expression for the fields in the
Fresnel region may de derived by referring to fig. 7a. From the geometry of
the diagram, the expression for the fields in front of the aperture may be
written as:

E(y,r) = f e-JkPdx (50)
line P

The radial distance from a point on the aperture to an observation point
can be written as:

p = VrI + (y -- X7 (51)

or

P = Pa (52)

By applying the approximation

1= 1+7 (53)

the radial distance from a point on the aperture to the observation point may
be written as:
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p ~ _ + 1~l-+ - ) (54)

By referring to fig. 7a, the angle e of the point of observation relative to
the normal out of the aperture can be stated as:

= sinG (55)
PO

Thus eqn. (51) can be written as:

E(sinO) = keJk I I(x)ek(ysinfO " )dx (56)
P line

Eqn. (56) is characterized by the exponential term, which may be
considered in two parts. The first part, exp(+jyksine), is known as the
Fourier kernel and is associated with the far field or Fraunhoffer region.
The second term of the exponential, exp(-jy 2k/2po), is known as the Fresnel
kernel, and is associated with the fresnel region. In the far field, the
Fresnel kernel is negligible since po tends to infinity. It is a quadratic
phase front across the aperture, and is of the same form as the phase
distribution one would expect from a circular wave (in the single plane case)
impinging on the aperture from a point source at a finite distance in front of
the aperture. Since p is the range from the aperture it is apparent that the
radiation pattern in the Fresnel region is a function of range, whereas in the
far field all dependence on range has disappeared (except the I/r electric
field variation).

There are no fixed, well-defined boundaries specifying the transition
from the near field and Fresnel region and the Fresnel region and the far
field. Skolnik (111 states that the inner Fresnel boundary is taken to be
that distance from the antenna at which the reactive component of the field is
not more that 1% of the radiated field. From this, he concludes that the
Fresnel approximations should not be used to predict fields closer that 8
wavelengths from the aperture, since at this distance the reactive field
intensity is about 40 dB below the radiated field intensity.

The outer Fresnel boundary has traditionally been taken as 2D2/X (used
mainly for measruements of antenna patterns), where D is the maximum dimension
of the aperture. This is an arbitrary but (generally) conservative minimum
distance at which the far field approximations may be applied. This criterion
arises by imposing the constraint that the maximum allowable edge phase error
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on the aperture is w/8 rad. The path difference between a ray from an
observation point on boresight of the aperture and the centre of the aperture
vs. the edge of the aperture is given by, referring to fig. 7b:

y-x = A/16 (57)

and also

y = 1( )2 + x2  (58)

Substituting eqn. (58) into eqn. (57), the path difference is expressed:

D2 A

T) + X2 = (59)

Isolating x in eqn. (59) gives:

X 64D2 - A2  (60)

and if D >> X, then

2D2 (61)

Note that this 2D2/X definition of the transition from the Fresnel region to
the far field cannot be used for antennas smaller than 2X because of the
reactive field criterion (of 8X from the aperture, Skolnik [11]) for the
transition from the near field to the Fresnel region. For a 2X aperture, the
minimum distance to the far field is equal to the distance at which the
reactive field is i of the radiated field.

Because the definition of the distance to the outer Fresnel boundary is
generally taken as 2D2/., it is natural to ask if the aperture distribution in
any way affects the minimum distance at which the far field approximations may
be applied. Jull [121 states that the effect of finite range on a radiation
pattern does depend on the aperture distribution, but in a qualitative way.
He states that patterns highly tapered towards the edges are less affected by
path differences than distributions weighted to the edges, and as a
consequence 2D2/X may not be conservative enough in the latter case. The
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finite range effects and properties of antennas are important when dealing
with large antennas, such as reflectors. For example, consider a satellite
station having a paraboloidal reflector 30 metres in diameter. The 2D2/x
approximation with an uplink frequency of 6 GHz determines an outer Fresnel
region limit at approximately 36 km. Thus all test measurements of the
reflector are restricted to the Fresnel region. Even for small antennas, far
field measurements may prove difficult or impossible. At 35 GHz a I metre
reflector requires a test range of over 230 metres, which is difficult to
arrange due to multipath problems. Such measurements might be more easily
arranged if the 2D2/X criterion is unnecessarily conservative for certain
aperture distributions. Thus it may be useful to specify the minimum distance
to the far field as a function of aperture distribution in a rigorous way.

4.2 Minimum Far Field Criteria

4.2.1 The Fresnel Zones Criterion

In order to determine the effect of the aperture distribution on the
minimum range at which the far field approximations may be applied, the
implications of the far field approximations must be examined at a fundamental
level. As stated previously, the form of the radiation pattern is a function
of range in the Fresnel region. The radiation pattern converges in some sense
to the far field pattern as the range increases through the Fresnel region.
An aperture distribution based criterion for the minimum range at which the
far field approximations may be applied (outer extent of the Fresnel region)
should in some way reflect that the traditional conservative placement of the
boundary is acceptable for most uniform phase aperture antennas. A standard
or point of reference is required for such a criterion, and this reference
should be related to the conservative placement of 2D2 /\. For the purposes of
this investigation, however, the reference range is arbitrarily taken as
D2/2X, to highlight the analytical nature of the investigation by divorcing
the results from traditional definitions of the outer extent of the Fresnel
region.

An example of a criterion which is not based on aperture distribution is
presented by Silver. Silver ([13], pp. 196 ff) uses Fresnel zones to define
the minimum distance at which the far field assumptions can be applied. To
develop this criterion, the aperture is divided up into Fresnel zones by
considering a point some distance away on boresight, surrounded by concentric
spheres of radii increasing in steps of n/2. The intersections of these
spheres and the aperture form rings on the aperture plane. Successive rings
on the aperture, then, give alternately positive and negative contributions to
the field received at the point on boresight - this is due to the path
differences between the various rings and the field point. Following Silver,
the field at the measurement point is given by the sum of the contributions of
all the rings, or (assuming a whole number of Fresnel zones in the aperture)

F = sl-s2 + s3-... (62)
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where sl is the magnitude of the contribution of the Ith Fresnel zone. This

sum can be reduced to (approximately):

S = 0.5(sl L sN) (63)

depending on whether the Nth zone is odd or even. Thus sliding the field
point along boresight causes the received boresight field to increase and
decrease depending on the Fresnel zones which are impressed on the aperture.
At distances beyond which the aperture is just a single Fresnel zone or part
thereof, there is no more field fluctuation with distance. The distance at
which the aperture decomposes to exactly one Fresnel zone is D2/4X. However,
Silver points out that this distance cannot be taken as the minimum distance
to the far field since the aperture edge is still 1800 out of phase with the
centre. At a distance of D2/X the aperture edge is w/4 out of phase with the
centre, and this is determined to approximate the far field conditions
sufficiently well (ie. phase differences across the aperture due to path
differences to field points are negligible).

Silver ([131, p. 562) also quotes the radiation pattern beamwidth as an
indication of the minimum distance at which the far field approximations
apply. He notes that the 10 dB width of the radiation intensity pattern
remains approximately constant for path distances greater than 1.5D 2/X, and
notes that this agrees with the more conventional (and conservative)
definition of 2D2 /).

4.2.2 Half Power Beamwidth Criterion

There are a number of other criteria, based on a heuristic approach to
this question, which could be used to quantitatively specify the minimum
distance to the far field. One such heuristic criterion might be the measure
of the half power beamwidth (HPBW) of the pattern at a given range from the
aperture. The criterion might place a constraint on the HPBW of the pattern
in the Fresnel region such that the far field approximations are reasonable if
the far field and finite range HPBW values are close to each other (eg. the
ratio of the Fresnel HPBW to far field HPBW evaluates to some predetermined,
fixed convergence factor).

To pursue this possibility, note that there is an approximate
relationship between HPBW and aperture dimension D:

HPBW A =0 (64)

Thus, using eqn. (64), eqn. (61) can be written as:

2D2 2D
-- - R (65)
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Stating 9 as m8', where m is a beam sharpening factor applied to a given
beamwidth e, then eqn. (65) predicts that as the HPBW becomes smaller, the
distance R to the far field increases very rapidly. For the standard or
reference minimum distance to the far field (necessary in matching such a
heuristic criterion to the D2/2X value), it is reasonable to heuristically
turn to the case of a uniform phase - uniform amplitude aperture. An estimate
of a possible convergence factor may be foried by taking the minimum distance
to the far field for this aperture to be D2/2X, calculating the HPBW at this
range, and normalizing to the far field value of HPBW. In this way, the
conventional definition of the minimum distance to the far field is
incorporated in the heuristic HPBW criterion. The value of the convergence
factor is approximately 0.982. With this criterion, the radiation patterns
for several apertures may be evaluated at different distances HPBW ratio
compared to the criterion of 0.982. This heuristic criterion, then, can be
stated as follows: the minimum range at which the far field approximations may
be applied corresponds to the range at which the ratio of the far field HPBW
to the finite range HPBW evaluates to 0.982.

This criterion is only one of a number of possible criteria which could
be proposed to define the outer extent of the Fresnel region. Other criteria
might use some other parameter of the radiation pattern which may show a
better correlation to far field distance (convergence of the finite range
pattern to the far field form), while also reflecting the changes in HPBW.
Such parameters could include the second moment of the main lobe (rather than
HPBW), the second moment of the aperture distribution, or the second moment of
the far field radiation pattern.

4.2.3 Xiase-Insensitive Criterion

Another possible (heuristic) criterion for fixing the minimum distance
to the far field draws on the notion that the radiation pattern is converging
to the far field pattern as range increases through the Fresnel region. A
mean squared difference criterion could be proposed over the visible region,
between the magnitude of the finite range pattern and the magnitude of the far
field pattern. This mean squared difference criterion, normalized using the
far field radiation pattern, is written as:

k a/2 _j/Y2D ya/2 D y  y yd y'

I1 f e D(y)eJyky2- I J 1YdyI 212dky
MSD -k -a/2 -a/2 (66)

f I f D(y)eYkydyI4dky
-k -a/2

where 3 = k/2po, from eqn. (56). Eqn. (66) actually represents a normalized
mean squared difference over the visible region between power patterns at
finite and infinite ranges. Because power patterns are used, phase
information in the radiation patterns does not affect the calculated minimum
distance to the far field. For this reason, this criterion may be understood
as a "phase-insensitive" criterion. This criterion applied over the visible
region yields a measurably verifiable (observable) degree of convergence
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between the two patterns, since the evanescent fields have become attenuated
to negligible value (by definition) in the Fresnel region. Including the
invisible region in the criterion could alter the predicted minimum distance
the far field in a way which might not bear a good correlation to the actual
measurements of the finite range radiation pattern.

The reference for this phase-insensitive mean squared difference
criterion may again be drawn from considering the uniform aperture case.
Evaluating eqn. (66) for the uniform phase - uniform amplitude aperture at a
range of D2/2X yields a numerical result which defines a convergence factor
which may be (heuristically) applied to other aperture distributions. Because
this criterion is determined by integration over only the visible region, this
numerical result is generally dependent on aperture size, since lengthening
the aperture corresponds to compressing the radiation pattern in angle and so
effectively increasing the amount of the radiation pattern which falls in the
visible region. However, for apertures which have most of their patterns in
the visible region already, the numerical result (convergence factor) is
relatively insensitive to increases in aperture size.

4.2.4 Phase-Sensitive Criterion

A third (heuristic) criterion for specifying the outer extent of the
Fresnel region bears a close resemblance to the phase-insensitive criterion.
In this case, phase information is included in forming the mean squared
difference, over the visible region, between the finite and infinite range
patterns. The criterion thus uses the generally complex electric field
antenna pattern rather than the power pattern, and is stated as:

M a/2e_jr -yy

f I f-e l)D(y)eJYdyl2dky
MSD = -a/2 (67)

CD a/2f _ f2D(y)e JYdyI  dky

Note that the normalization of the criterion is with respect to the
radiated power of the aperture. Also, the expression includes integration
over the visible and invisible regions. Although evanescent fields have
disappeared at the outer extent of the Fresnel region, from a strictly
theoretical point of view they have equal weight as the fields of the visible
region. This argument could also be applied to the phase-insensitive
criterion, though the interpretation of the power pattern in the invisible
region becomes uncertain since there is no net power flow associated with the
evanescent waves described by this region. By example, the phase-sensitive

criterion seems to have some advantage over the phase-insensitive criterion.
Considering the case of an aperture with delta functions at its edges, the
phase-insensitive criterion (eqn. (66)) evaluates to:

k e_j a j a -k a _ ky a e-jkyaI eJ (eJky + e- kY ) 1 2Y + ekY7 I 212dky

MSD -k k0 (68)

f I(e Y + e Y 14dky
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Clearly this is inconsistett with actual measurements that could be
taken. This discrepancy is attributable to the fact that eqn. (66) ignores
the phase information of the radiation pattern.

The above proposed criteria each have individual merits, and are
quantitatively investigated for the cases of 16 different uniform phase
aperture distributions. The results of this investigation constitute the
following section.

4.3 Investigation of the Minimum Far Field Criteria

The three minimum far field criteria all have in common that the
aperture distribution plays a determining role in specifying the minimum
distance at which the far field approximations may be applied (the outer
extent of the Fresnel region). The motivation behind this analysis is to
determine the extent of the Fresnel region of superdirective aperture
antennas, and so check the hypothesis that such antennas can exhibit large
Fresnel regions. To facilitate this, 16 different uniform phase/nonuniform
amplitude aperture distributions are chosen arbitrarily, and each of the
minimum far field criteria of the previous section is applied to these
apertures. The goal of this analysis is to draw generalizations concerning
the relationship between aperture distribution and the minimum distance at
which the far field approximations may be applied. Uniform phase apertures
are, by definition, not superdirective, and so are well suited to determining
the merit (in terms of conventional aperture distributions) of a given minimum
far field criterion. The selected aperture distributions are specified in
Appendix B, and are named and indexed below:

1 - UNIFORM
2 - DOUBLE COSINE

3 - TRIANGLE
4 - COSINE
5 - EDGE

6 - COMPLEMENT OF DOUBLE COSINE
7 - NOTCH
8 - FILLED EDGE
9 - EDGE + COMPLEMENT OF DOUBLE COSINE

10 - 1 + TRIANGLE
Ii - DOUBLE TRIANGLE

12 - COMPLEMENT OF DOUBLE TRIANGLE
13 - KNIFE EDGE
14 - COSINE SQUARED

15 - TRIANGLE SQUARED
16 - TRIANGLE

4

The aperture model used in the analysis is that shown in fig. 1. That
is, the aperture is one dimensional (line source) and lies along the y-axis.
The aperture radiates into the half space x > 0, and the magnetic field lies
along the z-axis. All simplifications drawn in Section 1 pertaining to this
figure apply in the following analysis.
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Fig. 8 shows a graph of normalized HPBW vs. distance from the aperture
for the first four aperture distributions. From the graph, the rate at which
the respective distributions converge (in a HPBW sense presented earlier) with
increasing range. The far field HPBW values for the first four aperture
distributions are given below:

UNIFORM : 0.2783
DOUBLE COSINE : 0.281

TRIANGLE : 0.4009
COSINE : 0.3747

(These HPBW values are measured in the ky plane). The DOUBLE COSINE
distribution has a wider main beam than the uniform distribution, and
converges quicker than the uniform case. However, the cosine distribution has
a narrower main beam than the triangle distribution, and converges faster.
Because of this and by exception, a simple minimum far field criterion based
on the value of the HPBW at a finite range normalized to the far field value
is unworkable, at least as formulated here.

Intuitively, the reason for this is probably that HPBW is too coarse or
arbitrary a parameter of a radiation pattern to be directly related to the
minimum range to the far field. Analytically, there is no rigorous obvious
reason to expect that the HPBW would be an indicator of the minimum range to
the far field. The motivation for investigating this possibility is that, by
approximating the HPBW by X/D, the traditional definition of the minimum range
to the far field (2D2/\) can be written in terms of the HPBW. The
approximation of HPBW as a function of X and D is quite rough - only a rule of
thumb, as shown by the example distributions below:

Distribution Half Power Beamwidth

UNIFORM 0.88 /D
TRIANGLE 1.27 /D

PARABOLIC 1.16 /D
SQUARED PARABOLIC 1.36 /D

SEMICIRCLE 1.02 /D

Thus criterion concerning the half power beamwidth ratio is excluded
from further discussions. This does not necessarily mean that the minimum
range to the far field might not be a function of HPBW by some other
criterion, nor does the crudeness of the X/D approximation devalue the
hypothesis that narrow beam patterns have a large Fresnel region.

The second minimum distance criterion described in the previous section
is given by eqn. (66), and is a (phase-insensitive) mean squared difference of
finite and infinite range power patterns, normalized using the radiation
pattern. Figs. 9a and 9b are graphs of this mean squared difference (MSD)
criterion vs. distance from the aperture. Each curve represents a different
aperture distribution, and shows how the respective power pattern converges to
the far field pattern. Using this criterion, the far field is defined to
begin at a range for which the phase-insensitive MSD expression evaluates to
0.04794 (the value of the expression for a uniform aperture at a range of
D2/2X). All apertures in the numerical calculations have a dimension of 10X.
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Figs. 9a and 9b are used to determine the range at which the
phase-insensitive MSD criterion is satisfied for each of the 16 aperture
distributions. This range for each aperture is the range at which the
respective MSD curve intercepts the line drawn at MSD = 0.04794. Fig. 10
shows a graph of HPBW vs. minimum range to the far field, according to this
criterion. A general trend of increased minimum range to the far field with
decreased HPBW is evident. Some data points directly refute this relationship
for this criterion. In any case, the scatter of data points is too great to
fit a best curve and draw meaningful quantitative conclusions about the
minimum range to the far field from the HPBW of the a given radiation pattern.

In order to define a more rigorous index of aperture width, to reflect
the aperture distribution, the physical width D is replaced by the second
moment D2 of the aperture distribution. A possible correlation between this
second moment D2 and the minimum range to the far field is then explored using
the above data for the 16 aperture distributions. Fig. 11 shows a graph of
HPBWxD2 vs. distance from the aperture. Since HPBW is proportional to D for a
given aperture distribution, it is also proportional to D2 , and scaling the
vertical axis in this way implies that the graph of fig. 11 is independent of
aperture size for apertures larger than 10'X (providing that the radiation
pattern of a given aperture of lOX lies principally in the visible region).
The horizontal axis is scaled with respect to D2/X). The data points of fig.
ii appear randomly scattered, thus there does not seem to be a useful
relationship between the second moment of the aperture distribution and the
minimum range to the far field, for this phase-insensitive MSD criterion.

Still another possibility in finding a correlation between the beamwidth
and the minimum range to the far field is to replace HPBW with the second
moment of the radiation pattern, calculated over the visible region (since for
the example distributions, the pattern in the invisible region is essentially
zero). Fig. 12 shows a graph of the standard deviation of the power pattern
vs. minimum range to the far field using the phase-insensitive MSD criterion.
Again, the data points of the 16 aperture distributions are almost randomly
scattered. A similar graph using the standard deviation of the main lobe also
shows a random scattering of points. Thus, as for the previous minimum range
criterion, using the phase-insensitive MSD criterion there appears to be no
useful relationship between the beamwidth of the radiation pattern and the
minimum range at which the far field approximations may be applied.

The last criterion for the outer extent of the Fresnel region to be
considered is given by eqn. (67), and is the mean squared (magnitude)
difference between the complex electric field pattern of the aperture,
calculated at finite and infinite range from the aperture. This criterion,
unlike the previous MSD criterion, includes phase information of the radiation
pattern. Also, for reasons stated previously, this MSD criterion is applied
over the entire radiation pattern. A brief discussion of the form that the
phase-sensitive MSD criterion should have in the invisible region is found in
Appendix A. As for the case of the phase-insensitive criterion, the
convergence factor of the phase-sensitive criterion is taken as eqn. (67)
evaluated at a range of D2/2X for a uniform phase/uniform amplitude aperture
of dimension 10.
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The range at which the phase-sensitive MSD criterion satifies the
convergence factor may be determined from fig. 13, for each of the 16 subject
aperture distributions. Fig. 13 shows a graph of the phase-sensitive MSD
criterion vs. range from the aperture for the 16 aperture distributions. The
convergence factor for the phase-sensitive criterion is 0.44443. The curves
have the same general shape as those of figs. 9a and 9b, but the relative
positions of the curves are shifted. Fig. 14 shows a graph of HPBW vs.
minimum range to the far field. Unlike the case of the phase-insensitive
criterion, there here appears to be a good correlation between HPBW and the
minimum range to the far field as specified by the phase-sensitive MSD
criterion. Fig. 14 is independent of aperture size since the integration of
eqn. (67) is over the entire radiation pattern. The apparent correlation
between HPBW and minimum range to the far field is striking, and seems in some
sense difficult to explain, since it appears to be better than the original
approximation of HPBW by X/D.

A graph of standard deviation of the main lobe vs. minimum range to the
far field is presented in fig. 15. The correlation between beamwidth and
minimum range to the far field is still good, though not as good as for HPBW.
Fig. 16 shows a graph of the standard deviation of the radiation pattern vs.
minimum range to the far field, and the scatter of the points is excessive.
It appears that, in heuristically considering the possibility of a correlation
between parameters of the radiation pattern and the minimum range to the far
field, the correlation is strongest for the HPBW of the radiation pattern when
using the phase-sensitive MSD criterion.

5.0 THE PHASE-SENSITIVE CRITERION

5.1 A Synthesis Form of the Phase-Sensitive Criterion

In the previous section, a correlation has been observed between HPBW
and the minimum range to the far field (outer extent of the Fresnel region) if
the phase-sensitive MSD criterion is used. However, the form of the
relationship is not obvious from eqn. (67). In order to gain insight into
this correlation and further investigate the properties of the phase-sensitive
MSD criterion, Parseval's Theorem may be applied to eqn. (67). Parseval's
Theorem relates power in the aperture domain to power in the antenna pattern
domain in this case, and may be expressed as:

OD 1 CD

f Ix(t)Jidt = f f IX(W)I2dw (69)

Since the integral expressions of the phase-sensitive MSD criterion
include squared magnitudes, Parseval's Theorem is well suited to simplifying
eqn. (67). The denominator of the phase-sensitive MSD criterion (eqn. (67))
may be written, using eqn. (69), as:

W a/2 a/2
f I f D(y)eykYdyl2dky = 2r I ID(y)12dy (70)

--w -a/2 -a/2
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Similarly, the numerator of eqn. (67) may be written as:

7 a/2(_jy2 y a/2.j 2 (
f I Ile )D(y)YdydY2dk y = 27r f I(e- y21)D(y)I 2sy (71)

-m -a/2 -a/ 2

The limits of integration of integrals in both the numerator and the
denominator are now finite. Recalling that the convergence factor for this
criterion is 0.44443, the phase-sensitive criterion may be written as:

a/2 2 B
f (eJBy 2Y-)D(y) I 2dy

= 0.44443 (72)a/

f _ D( y)I 2dy

The problem of determining the minimum range at which the far field
approximations may be applied has now been transferred from the antenna
pattern domain, where intuition works well, to the aperture domain, where
intuition is less effective. With this change of domain comes the possibility
of determining aperture distributions which have a desired outer range of the
Fresnel region. The aperture form of the criterion suggests a synthesis
equation in this sense. Pursuing this, the phase-sensitive MSD equation can
be written as:

a/2 a/2
f I(eJIY2 l-)D(y)I2dy-0.44443 f ID(y)I2dy = 0 (73)

-a/2 -a/2

Merging the integral signs and factoring out D(y), eqn. (73) can be written as:

a/2 '
1 f{I(e-J Y2- 1)12-0.44443}D(y)I2dy = 0 (74)

-a/ 2

Expanding the first squared magnitude term simplifies the expression to:

a/2
J {(cos(Ily2) - 1)2 + sin2(13y2) - 0.44443}1 D(y) 2dy = 0 (75)

-a/2
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In some sense eqn. (75) may be interpreted as a synthesis equation for
constructing aperture distributions which have a specified outer extent of the
Fresnel region, as defined by the phase-sensitive MSD criterion. The outer
extent of the Fresnel region is specified by choosing a value for 1, since
1 = k/2p (see eqn. (56)) is inversely proportional to the range at which the
phase-sensitive MSD criterion is evaluated.

The integrand of eqn. (75) is the product of two functions, and the
expression tells us that the area under the composite function must be zero at
the range equal to the outer extent of the Fresnel region, for a given
aperture. At ranges greater than the outer extent of the Fresnel region, eqn.
(75) yields a negative value (ie. in the far field according to this
criterion, eqn. (75) is negative). The second term of the integrand is a
squared magnitude, and so is positive definite. Thus the balancing of the
positive and negative contributions to the integral is controlled by the first
term of the integrand, and by the limits on the integral. Adjusting the
limits of the integral corresponds to altering the aperture size in order to
achieve a certain range to the outer bound of the Fresnel region. Closer
examination of the first term in the integrand shows that, as expected, large
apertures imply a relatively large Fresnel region. This can be understood by
noting that the first term of the integrand is a function of 1, and so is
determined by the choice of the range to the outer extent of the Fresnel
region. For relatively large range from the aperture (relatively small values
of 1, see eqn. (56)), this function is a quadratic curve with a negative dc
offset of 0.4443. The first term of the integrand is shown in fig. 17. As
the value of 1 becomes small, the quadratic curve flattens out. The region of
the integrand which contributes positively to the integral becomes pinched off
at the edges of the aperture. With this in mind, the phase-sensitive MSD
criterion can more properly be written as an inequality.

In the general case, a value for a is determined for which the criterion
evaluates to zero. Since this range is by definition in the far field, values
of range larger than this (smaller values of R) must also be in the far field
of the aperture. Since J--ger values of range (smaller values of 1) cause the
integral of eqn. (75) to become negative, the "=" of eqn. (75) may be replaced
with "". This results in a subtle change in the interpretation of the
phase-sensitive MSD equation (eqn. (75)): values of 1 for which the integral
is negative lie in the far field, and the outer extent of the Fresnel region
lies at a range corresponding to the largest value of R which satisfies the
inequality.

With this more proper form for the criterion and returning to the
observation that the positive contribution in the integral is pinched off at
the edges of the aperture with decreasing 1, additional conclusions may be
drawn. Aperture weighting in the negative region of the integrand acts to
move the outer extent of the Fresnel region closer to the aperture. Weighting
the aperture distribution in the positive region of the integrand acts to move
the outer extent of the Fresnel region farther from the aperture. Positive
contributions are at and near the aperture edges, and negative contributions
are centred near the centre of the aperture. The transition point between
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positive and negative contributions is determined by the value of 3. In order
to synthesize an aperture with the largest possible range to the outer
boundary of the Fresnel region, an aperture weighting should be selected which
is heavily weighted at the aperture edges, with zero or reduced weighting near
the centre. In the limit the aperture distribution with the largest range to
the outer Fresnel region is one consisting of delta functions at the at the
aperture edges, zero valued otherwise. The largest value of 1 which satisfies
the phase-sensitive MSD criterion for such an aperture is that value for which
the first term of the integrand of eqn. (75) is zero valued at the aperture
edges. Due to the negative offset of 0.44443, the integrand is negative over
the entire aperture, though for this special case this region is given zero
weight. For a i0X aperture the maximum value of 3 is 0.02719, which
corresponds to an outer Fresnel region (minimum far field range) of 1.156D 2/X
(compared with the reference range of D2/2X for the uniform aperture).

With this understanding, it is appropriate to reconsider the graph of
fig. 14. The "delta" aperture has a radiation pattern corresponding to a sine
function and has the narrowest main lobe of all 16 aperture distributions
considered in this investigation. It contributes a data point in this graph
at approximately 116X, in agreement with the trend of the data. Further
insight into the relationship between beamwidth and the outer extent of the
Fresnel region is obtained by examining the form of the second term (positive
definite term) of the integrand of eqn. (75).

The second term of the integrand is the squared magnitude of the
aperture distribution. This means that the phasing of the aperture
distribution is actually ignored by ' ie phase-sensitive MSD criterion. (note
that the term "phase-sensitive" criterion refers to the fact that the phase
information in the radiation pattern domain is used in determining the degree
of convergence of the finite range pattern to the far field form, and does not
imply conditions of the criterion when translated to the aperture domain).
The fact that the phase information of the aperture is ignored by this
criterion implies that the graph of fig. 14 indicates a trend, but does not
continue past a minimum range of approximately 116X. According to the
phase-sensitive MSD criterion and using the (artificial) convergence factor
derived from D2/2, the outer extent of the Fresnel region for an aperture
antenna lies between the minimum range of validity of the criterion (8x) and
1.1557D2 /\ (which occurs for the case of an aperture with delta functions at
the aperture edges). This statement applies irrespective of aperture
amplitude and/or phase distribution.

The fact that the phase of the aperture distribution is ignored by the
phase-sensitive MSD criterion means that the original hypothesis, that a
superdirective aperture has a large Fresnel region, is invalid in the context
of this analysis. Such apertures rely on phasing effects to achieve narrow
beamwidths, and it has become apparent that while such phasing does alter the
shape of the radiation pattern, the mean squared difference between the finite
range and far field pattern shapes is not affected by this phasing. This
conclusion has implicit to it a qualifications which permeates all
mathematical considerations in the analysis thus far. The qualification is
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that range to the outer extent of the near field should not excede the range
to the outer extent of the Fresnel region. Theoretically there does exist the
possibility that the range at which the reactive so-called "near field" could
outstrip (in range) geometrical or path difference Fresnel effects. Such a
condition might arise for the case of a strongly superdirective antenna. The
effect of such a near field boundary and Fresnel boundary inversion on the
phase-sensitive MSD criterion is beyond the scope of this investigation. Thus
the conclusion that the hypothesis has been disproved may only be justified

-. for the case of marginally superdirective antennas. Also, the conclusion that
the hypothesis is incorrect is strictly in terms of the phase-sensitive MSD
criterion, though this criterion is reasonable in the sense of indicating the
validity of the far field approximations, and is conventional in the sense of
using the normalized squared difference.

5.2 Half Power Beamwidth and the Minimum Far Field Distance

The previously presented (fig. 14) relationship between HPBW and the
range of the outer extent of the Fresnel region is now investigated using the
modified form (eqn. (75) of the phase-sensitive MSD criterion. The criterion,
expressed appropriately as an inequality, is repeated below for convenience:

a/2
I f{(cos(3y2 ) - 1)2 + sin2(ay2) - 0.44443} I D(y) I 2dy < 0 (76)

-a/ 2

As stated in the previous section, the first factor of the integrand is a
quadratic curve with a negative dc offset, while the second term is positive
definite. Thus the first factor controls those areas of the aperture
distribution which contribute positively or negatively to the integral.
Further, the shape of the quadratic curve is related to the range between the
observer and the aperture. As the range increases, the quadratic curve
becomes flatter over the integration interval - a factor which is important in
explaining the observed relationship between HPBW and the range to the outer
extent of the Fresnel region. This flattening of the quadratic curve over the
integration interval is reflected in the plot of the trajectories of its zero
crossings as 3 is varied, shown in fig. 19.

In order to carry out an investigation of this observed HPBW
relationship, a family of continuously varying apertures (considered typical
of the aperture distributions considered thus far) are considered. These
distributions are shown in fig. 18.

In the first case, the aperture distribution under consideration has
zero weight over a symmetrical interval centred on the aperture, and uniform
amplitude and phase elsewhere. The width "b" of the nonzero intervals is a
variable of the aperture distribution. In the second case, the nonzero
interval of the aperture is symmetrical about the centre of "he aperture and
has width "c". Varying "c" corresponds to varying the width of a uniform
aperture. At the range at which the inequality of eqn. (76) is just met, the
zero crossings of the quadratic curve must occur somewhere in the nonzero
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regions of the aperture distribution. This is because positive and negative
areas of the integrand must cancel to yield a zero result of the integral.
Considering the first family of continuously varying apertures, if the width
"b" of the nonzero regions is small, then the quadratic curve is roughly
linear over the nonzero region of the aperture, and the required position of
the zero crossings is approximately at the midpoint of the nonzero regions.
This approximate required location of the zero crossings may be used to
determine a value of 1, corresponding to a range from the aperture which
yields such zero crossings, ie. by referring to fig. 19.

Graphs of HPBW vs. range to the outer extent of the Fresnel region may
be compared for the 16 aperture distributions considered previously and this
family of continuously varying apertures. Such a comparison is shown in fig.
20. Although the curves do not overlap, it is apparent that they both have
the same shape. This supports the insight that the relationship between HPBW
and the range to the outer extent of the Fresnel region hinges on the notion
that the positive and negative areas of the MSD integrand must cancel at the
minimum range. As the aperture weight is moved to the edges, the boundaries
separating the positive and negative areas of the integrand must move toward
the aperture edges, corresponding to flattening the quadratic curve and
increasing the minimum range at which the MSD criterion is satisfied.
Conversely, distributions which are tapered at the edges exhibit relatively
small range to the outer Fresnel region.

It is well known that as edge taper of an aperture distribution is
increased, its sidelobe levels fall and HPBW increases. Conversely, as the
distribution is weighted to the edges, the sidelobe levels rise and HPBW
decreases. Thus it is apparent that the unexpected good correlation between
HPBW and range to the outer Fresnel region arises from the not so unexpected
correlation between HPBW and edge taper. For this reason, the correlation
between HPBW and range to the outer Fresnel region observed in fig. 14 is a
misleadingly good one, and is qualitative in the sense that HPBW can be
qualitatively related to edge taper. The investigation of the "family" of
continuously varying aperture distributions indicates that including other
arbitrary aperture distributions would only serve to increase the scatter
about a best curve (ie. the full extent of the scatter by including other
aperture distributions is not apparent in fig. 14).

6.0 POLARIZATION EFFECTS AND A DIRECTIONAL CRITERION

6.1 The Infinitessimal Current Patch

The vector nature of the electromagnetic field has been ignored in both
qualitative and quantitative discussions of the range of the outer Fresnel
boundary thus far. The phase-sensitive MSD criterion expresses mathematically
the notion that the radiation pattern of an aperture changes with increasing
range through the Fresnel region, converging to the far field form at large
range. Although the shape of the radiation pattern as calculated from scalar
equations may have converged closely to the far field pattern, it is possible
that there are near field polarization effects that might cause this finite
range pattern and the far field pattern to be quite different. The question
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becomes whether range dependent polarization effects are significant enough to
warrant inclusion in a definition of the range to the outer boundary of the
Fresnel region. A natural question to ask, then concerns the relationship
between scalar and vector field expressions.

A useful way of approaching this question involves the analysis and
description of the vector electromagnetic fields around an infinitessimal
current element. It is well known that there is a radial component of the
electric field which is significant at close range to the antenna, but
vanishes in the far field. Investigating the mathematical foundation for this
vanishing, space-dependent component may yield some insight into the issue of
polarization and its relevance to discussions of the minimum range to the
outer boundary of the Fresnel region.

An analysis of the vector fields around an infinitessimal current
element is now presented, following Balanis ([14], pp 164 - 169). Calculation
of the vector fields arising from a distribution of sources in a volume V is
most easily done by first calculating the vector potential. The vector
potential is given, in a (x,y,z) coordinate system, by:

W O J(x " , ',z,) -k
-T--O Jx e-jkrdV' = A (77)

V/ r

where

r = - x') 2 + (y - y') 2 + (z - z' 2  (78)

and primed (') coordinates are source points, unprimed coordinates are field
(observation) points. For reasons which will be apparent in a further
section, the infinitessimal current element is assigned an infinitessimal
width dy, so that the subject of the analysis is actually an infinitessimal
patch of linearly directed current. This adjustment of the model has only a
trivial effect on the form of the field equations, but allows generalizations
about planar apertures from the results of the analysis. The geometry of the
infinitessimal current patch is presented in fig. 21. Because the element has
only dz length, eqn. (77) reduces to:

A = d e- jk r A ( 79)
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Moving to spherical coordinates, the unit vector in the z-direction can be

written as:

az = arcosO- sinO (80)

Having formed the vector potential of the fields, the magnetic field strength
is found from the expression:

= (L) x (81)

and has the form:

a= {I + 7} sinej(-kr) (82)

Thus the magnetic field has only a * component, and has a sine
dependence. From the magnetic field strength the electric field strength can
be specified, using the relation:

= 1 VxA (83)

The electric field is given by:

-j oIdzdy { + I} cos (t-kr) (84)

r = 2 irk u er'j

E -J zd{k 2 + k + l}sinJ(t-kr) (85)
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The electric field has a radial component, which decreases as the square of
the range from the current patch, and has a cose dependence. This contrasts
the remaining E and H fields, which have a sine dependence. The angular
variation of these fields is shown in fig. 22.

The polarization of the E field is now examined as a function of r and
e. The radial dependence of E0 is examined first, repeated below for
convenience:

E (r) I"' (86)

If r > 11, then first term of the right hand side of eqn. (86) is the largest
term. The field thus points in the positive direction, since k is positive.
The radial component of the E field has a cose dependence, thus the E field at
the four principal positions around the source is parallel to the z-axis, as
shown in fig. 23. Description of the E-field as a function of r and e between
these four principal positions now follows.

Since the field is complex, the real and imaginary parts of the E field
are considered separately. Considering r larger than 1 wavelength, a vector
diagram of the addition of the r and e E field components is shown in
fig. 24. The angle * of the total real E field can thus be expressed as:

l COSO
= -- tan {-} tan y--1 1 (87)

and at e = r/4, the expression simplifies to:

-1

=tan'1 r (88)-r - r-T}

Performing a similar analysis for the imaginary component of the total E
field, and again using the geometry of fig. 24, the angle of the imaginary

% component of the E field can be expressed as:

-k o
1 -2COS0 -l cos0 (89)t-n -  tan -  2sin

sinO
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Note that the angle of the total imaginary E field is not a function of range
because both r and e E field components fall of as the square of range r. The
variation of the real and imaginary total E vectors with radial distance r and
angle e is presented in figs. 25 and 26.

These two diagrams, and especially that of the total real E field, show
that the total E vector "tumbles" away from the source, twisting with range.
The question remains whether this radial polarization variation plays a role
in determining the range to the outer boundary of the Fresnel region, and more
specifically, whether it invalidates the (scalar) phase-sensitive MSD
criterion.

The radial variation of the total (real and imaginary) E vector arises
from the i/r2 and I/r3 terms in the radial real E component. At large range
from the source current patch, the components have died away (as has the
imaginary E field components) and the remaining term has only a direction
component. It is natural, then, to now specify a range at which this radial
component may be ignored. Because we are dealing with a vector addition of r
and e E field components and because radial E component can be thought of as a
perturbation of the direction of the Ee component, the radial E component is
taken to be negligible when it is 1/20 of the Ee component. That is to say,
the perturbation of a vector by the addition of an orthogonal vector 1/20 of
its magnitude is deemed to be negligible. Applying this criterion along the e
= jr/4 contour where the coefficients of the radial and e components are equal
(sine = cose), then the radial component may be ignored at ranges of more than
20 wavelengths. Thus, conservatively and in a polarization sense, the far
field approximations may be applied at a range of greater than 20X wavelengths
from the current patch, along a lines of observation corresponding to e =
+1r/4. This statement is more conservative for observation angles closer to e
= n/2 (normal to the direction of current flow), and less conservative for
angles of observation near e = 0 (along the direction of current flow), due to
the cose variation of the radial component. To quantify the 20 wavelength
criterion somewhat, the direction of the total real E vector is tabulated
below at e = w/4 for some selected range values:

r (wavelengths) angle of real E at e = ir/4

1 47.980
2 45.730
3 45.320
5 45.120
7 45.060

10 45.030
infinity 45.000

6.2 Vector vs. Scalar Aperture Field Expressions

The modelled source in the above analysis is an infinitessimal linearly
polarized current patch, rather than a current element having zero width.
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FIG. 26: DIAGRAM SHOWING THE POLARIZATION OF THE POLARIZATION
OF THE IMAGINARY E VECTOR OVER ONE QUADRANT
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This analysis can be extended to draw generalizations concerning planar
apertures by applying the principle of superposition. Theoretically, and
planar aperture can be synthesized by combining properly positioned, weighted
and phased current patches. The conclusions of the previous section,
concerning the significance of the radial component of the electric field,
still apply, though the vector addition of the resulting fields and their
spatial distribution implies that there is another possible source of a radial
component of the total field. "Point source" polarization effects (as a
function of range r) may be ignored beyond a range of 20\, though polarization
effects due to the actual antenna size and geometry deserve consideration.
Fig. 26a shows the geometry describing this component.

If the infinitessimal current patches are spatially distributed, then a
component of the E field from a single current patch may contribute a radial
component to the total E field, as measured from the centre of the aperture.
This additional radial component arises, then, from the spatial distribution
of the current patches about the centre of the aperture. The radial component
on boresight due to a single current patch is given by:

E = Asino = Ahdh (89a)
r n + r2

where A is the (complex) weighting of the current patch of width dh, and h is
the displacement of the current patch from the centre of the aperture. If r
>> h, then the radial component due to a single current patch is given by:

Ahdh
E = r (89b)r r

Integrating over the entire aperture, assuming a uniform phase/uniform
amplitude aperture distribution, and normalizing to the weighting A of the
current patch, the total radial E field on boresight at range r >> h is given
by:

+D/2

EDo = 2 (89c)
-D/2

Similarly, the total Ee field component from a single current patch can be
expressed as:

E0 = Acoso - Ardh - Adh (89d)
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Integrating over the entire aperture and normalizing to the current patch
weighting A, the total Ee field component on boresight for a uniform
phase/uniform amplitude aperture at range r >> h is:

+D/2

Eq tot. I dh = D (89e)
-D/2

Using eqns. (89c) and (89e), the constraint that the radial component of
the E field must be less than 1/20 the e component translates to a range of:

r > 5D (89f)

This criterion that the radial component of the polarization be negligible
relative to the Ee component implies a larger range than that determined for a
single current patch if the aperture is larger than 4 wavelengths. For
apertures of several wavelengths, this constraint on the range to the outer
boundary of the Fresnel region is less than that determined by the
phase-sensitive MSD criterion, and so we tentatively conclude that
polarization effects do not invalidate the MSD criterion, at least for even
aperture distribution functions.

To state this conclusion with absolute conviction would require a
consideration of aperture distributions other than the uniform case considered
here, and for directions other than boresight. A notable exception to this
generalization might be an odd aperture distribution which, through
destructive interference, cancels the e field component on boresight but not
the radial component. An example of such an aperture is one having a positive
delta excitation on one side and a negative delta excitation on the other (and
otherwise zero excitation), though the cancellation of the 9 component of the
E field only occurs at the nulls of the radiation pattern. Over the balance
of the radiation pattern the MSD criterion is expected to be more conservative
than the geometrical effects giving rise to the radial component of the total
E field.

This geometrically derived radial component, as well as point source
polarization effects, can be shown to be generally negligible at the range of
the outer boundary of the Fresnel region (as predicted by the phase-sensitive
MSD criterion) by using another approach. To demonstrate this, we return to
the issue of reconciling the current patch analysis and the subsequent 20
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wavelength criterion with the scalar method of calculating the electromagnetic
fields of an aperture antenna. We wish to understand the nature of the
simplifications which allow the vector nature of the fields to be ignored and
instead calculated as a scalar field (see Silver [13], pp. 164, 165). If the
fields are linearly polarized over the aperture, the vector expression for the
diffraction field of the aperture (excluding the line integral which accounts
for the distribution of charge around the boundary) can be reduced to:

1 - (fix)xVp + (fi.E)VO}dS

A
(90)

-~f44 }dS +~ *ExrdS
ArA

where:

e jkr (91)
r

and the normal derivative d/dn is applied to each cartesian component of the
electric field. T is a vector (in the plane of the aperture) perpendicular to
the polarization of the E field in the aperture. The complete expression for
the electric field around the aperture can then be written as:

A* +- ObExidS

(92)

- rA

Silver points out that the high frequency approximation used in
analyzing appropriate electromagnetic diffraction problems is based on the
assumption that the diffraction rays are confined to small angles away from
the normal out of the aperture. Under this condition, the scalar surface

"- integral may be taken alone in calculating the diffraction field, as shown
below:

U(P) = f { udS (93)
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where u is the proper component for the linearly polarized electric field.
However, Silver points out that the scalar expression for the fields around
the aperture can only yield qualitative results very close to the aperture
because the line integrals (of eqn (92)) which were ignored make a significant
contribution. The twisting of the field vectors in this region is attributed
to the vector contributions of these line integrals. Silver states that the
line integrals are significant throughout the near zone (ie. that region
comprised of points in the immediate neighborhood of the aperture). Beyond
this range the scalar representation of the fields is appropriate.

This, then, reconciles the vector nature of the electromagnetic fields
of an aperture antenna with the scalar expressions for the fields and with the
case of an infinitessimal current patch. In summary, only one component of
the vector field dominates at large range from the source - that component
which is transverse to the direction of propagation (this is actually the
radiation condition). This means that at sufficiently large range, the angle
of observation specifies the polarization of the radiated field, and so a
scalar description of the fields can be adopted with the direction of
polarization "understood". Also, at closer range, the polarization of the
field exhibits a radial dependence and a scalar representation is
inappropriate. Range dependent polarization effects do not appear to
invalidate the phase-sensitive MSD criterion because of the conservative range
specified by this criterion in estimating the outer extent of the Fresnel
region.

6.3 A Modified Mean Squared Difference Criterion

The investigation thus far has included a mathematical and qualitative
description of the nature of superdirective antennas, the hypothesis that such
antennas have a large Fresnel region (large minimum range to acceptable
application of the far field approximations), and has included the formulation
of a rigorous definition of the range to the outer boundary of the Fresnel
region. Having investigated this phase-sensitive mean squared difference
(MSD) criterion, an apparent correlation was observed between half power
beamwidth (HPBW) and the range to the outer boundary of the Fresnel region,
which tended to support the hypothesis. However, a slight mathematical
rewo-king of the criterion produced (in a loose sense), a synthesis form of
the MSD criterion and showed that, using this criterion, the hypothesis is
disproved. It is natural then to return to this criterion and again examine
its formulation to gain insight into why the hypothesis is disproved. As
pointed out in a previous section, the phase-sensitive MSD criterion is
reasonable in that it indexes the quality of the far field approximations at
finite range by expressing the degree of convergence of the finite range
complex radiation pattern to the far field form. Further, the phase-sensitive
MSD criterion is conventional in the sense that a normalized mean squared
difference scheme is employed to compare the complex radiation patterns.

An important feature of the phase-sensitive MSD criterion is that, in
the form presented previously, it is applied over the entire radiation
pattern, including the invisible region. This formulation was chosen to
ensure mathematical consistency, since any alternative would be to favour some
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part of the radiation pattern - a justification of which is absent in the
original generally-formulated hypothesis. However, the disproval of the
hypothesis (at least in the absence of an inversion of the near field/Fresnel
boundary, ie. strongly superdirective antennas) gives some motivation to
investigate the possibility of applying the phase-sensitive MSD criterion over
only a specific sector. An application of the MSD criterion over a sector is
interpreted as specifying the minimum range from an antenna at which the far
field approximations may be applied over the given sector. This required
minimum range can be shown to be a function of the position and size of the
sector. Even sectors corresponding to complex angles of observation (the
invisible region) are of interest since these sectors can be made visible by
shifting the radiation pattern with a phase tilt across the aperture.

The original form of the phase-sensitive MSD criterion is repeated below
for convenience:

I a/2 (e Py2- 1)D(y)ejykYdyl2dky

- -a < K (94)
aD a/2 " k
7 I' 2 D(y)ejy Ydyl2dky

-a/2

where K is the convergence factor against which the different aperture
distributions are evaluated, and chosen to reflect traditional (distribution
independent) definitions of the range to the outer boundary of the Fresnel
region. Eqn. (94) can be written as:

7 H(ky) 2dky

< K (95)

1 jG(ky) 2dky

This criterion may be applied over a sector of the radiation pattern by
windowing the radiation pattern as indicated below:

7 I W(ky-ko)H(ky) I2dky
- < K (96 )

I I W(ky-ko)G(ky) I 2dky
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where W(ky) is the window function in the antenna pattern domain. Parseval's
theorem may be used to transform this expression from the radiation pattern
domain to the aperture domain, converting multiplication to convolution:

iekyR()*(e-jIY 2 -l)D(y) I2dy - K 7 eikYR(y)*D(Y) I 2dy < 0 (97)

where R(y) is the inverse Fourier Transform of the window function, and the
exponentials arise from the shifting property of the Fourier Transform. Eqn.
(97) can be written as the products of complex conjugates:

7 koR(y-x)(eJx 2 1)D(x)dx 7 eJkOR*(yZ)(ez 2 1)D*(Z)dz

-K I eLkR(y-x)D*(x)dx D e-JkOR*(y-z)D*(z)dz} < 0 (98)

The only terms of eqn. (98) which are functions of y are the window functions,
and so the order of integration can be changed. Collecting like terms, eqn.
(98) can be rewritten as:

a/2 a/2 .- . "ekox-jkoz *f f {(e - 1X2 l1)(JzZ2 1)- K j  e D(x)D (z)
-a/2 -a/2

f R(y-x)R (y-z)dxdydz < 0 (99)

By examining the form of eqn. (99), a parallel becomes apparent with the
synthesis form of the phase-sensitive MSD criterion presented in eqn. (91).
Eqn. (91) identifies regions of the line aperture distribution which
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contribute positive or negative area to the MSD integral. Regions
contributing positive area must be more heavily weighted in order to ensure a
large range to the outer boundary of the Fresnel region. Eqn. (99), however,
presents a plane, rather than a line, over which the weighting function of the
aperture distribution is defined, which determines regions of positive and
negative area contribution. The plane is that defined by the x and z
variables. The x-z plane collapses to a line along the diagonal for the case
of application of the MSD criterion over the entire (visible and invisible)
radiation pattern. This is because the window function ranges over all real
and complex angles and thus R(y) becomes a delta function. The integration
contour thus lies along x = z for this special case.

Further simplifying assumptions could be introduced to the directional
or windowed form of the phase-sensitive MSD criterion, such as specifying the
window shape in the radiation pattern domain to be a sin(x)/x function. This
would yield a rectangular R(y) function allowing integration with respect to y
and a closed form expression of the result. However, the remaining integrand
is still relatively complicated and so does not lead to a simple graphically
clear weighting function which should be applied to an aperture function, to
ensure a large range to the outer Fresnel boundary at a given observation
angle. Whereas the omnidirectional form of the phase-sensitive MSD criterion
was found to be insensitive to the phase profile of the aperture distribution,
the directional form of the criterion is clearly a function of this phase
profile.

Yet another simplifying assumption which could be introduced is to let
the window function W(ky) become a delta function in the radiation pattern
domain. This corresponds to determining the convergence of the radiated
field, to the far field form, at a single angle of observation rather than
over a sector. The phase-sensitive MSD criterion can be written in this case
as:

a/2 a/2
_/ (e-JIY 2-1)D(y)kOYdy1 2 - k I D(Y) k y

a/2 a/2 dYj2 0 (100)

This directional criterion is shown in fig. 27, evaluated over most of
the visible region for the case of a uniform aperture distribution and for a
convergence factor arbitrarily borrowed from the omnidirectional criterion.
There is a large variation of the range to the outer boundary of the Fresnel
region using the directional criterion - as much as an order of magnitude.
Most striking is that the range to the outer boundary of the Fresnel region
increases dramatically near the nulls in the radiation pattern. Also, it is
clear that the radiation pattern near the first (and to a lesser degree the
second) null requires a large range to converge to the far field form. In
contrast, the mean beam converges quite quickly. This reflects the fact that
the main beam and higher order sidelobes form quite quickly with increasing
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range, whereas the first sidelobe begins as a "shoulder" of the main beam and
gradually separates with range as the first null increases in depth. this
convergence of the radiation pattern is hidden by the omnidirectional form of
the phase-sensitive MSD criterion since is comments only on the total mean
squared difference between the finite range and far field patterns. The
omnidirectional form does not indicate where the difference between the two
patterns is concentrated. Further, since the main beam constitutes the
balance of the radiated power, it is reasonable that the omnidirectional
version of the criterion predicts a range to the outer boundary of the Fresnel
region which is biased toward lower values. Although the graph of fig. 27
does not extend into the invisible region, it is reasonable to assume that the
trend of the graph continues, and that all higher order sidelobes form within
a relatively short range from the antenna.

Finally, fig. 27 gives another insight into the convergence of the
radiation pattern through the Fresnel region. The spikes near the nulls of
the radiation pattern arise from the fact that the far field nulls do not
exactly coincide with the nulls of the finite range pattern. That is, it
appears that the nulls shift position slightly with increasing range through
the Fresnel region. From the asymptotes of fig. 27, it appears that the nulls
of the finite range pattern move away from boresight as one moves away from
the antenna. The hypothesis that the angular placement of the nulls is a
function of range in the Fresnel region has not been tested and is beyond the
scope of this investigation.

The behavior of the radiation pattern near nulls suggests that the
original hypothesis, that a superdirective antenna may exhibit a large range
to the outer boundary of the Fresnel region, may be correct in some sense when
considering the directional criterion. Fig. 27 indicates that the shape of
the radiation pattern near a zero (or near a feature of the radiation pattern
having a steep slope) may take large range to converge to the far field form.

It is possible that antennas having a very narrow main beam may imply a large
range to the outer boundary of the Fresnel region for the beam have a good
approximation of the far field form. If this is so, then in this
(directional) sense the hypothesis could be considered correct.

6.4 Applications Notes

Perhaps the most natural application of this analysis and the
conclusions drawn concerns the range requirements in antenna pattern
measurement. The conventional and generally conservative 2D2/A range to the
outer boundary of the Fresnel region implies unachievably large test ranges
for antennas of only moderate size (although it is possible to determine the
far field pattern from near field measurements using elaborate mathematical
and measurement techniques). For instance, as mentioned previously, at 35 GHz
a I metre reflector requires a test range of over 230 metres. Multipath and
environmental conditions (such as rain and terrain irregularities) make such a
range difficult to realize and degrade the reliability of measurements when
such a range is available. Thus it is sensible to use as small a range as
possible when performing such antenna measurements.
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The notion of determining the quality of the 2D2/A approximation has
been examined by Hansen [151. He notes that the 2D2 /"X rule is generally
acceptable for antennas with moderate sidelobe levels (-25 dB), and that in
such cases directivity errors are of the order of 0.1 dB and pattern errors
are negligible. By using the Taylor n distribution (because it is a
versatile, efficient, and robust optimum distribution) he shows that the first
sidelobe of low sidelobe patterns requires a large range to converge to the
far field form. This conclusion is also presented by Hacker and Schrank [16]
by an analysis of several typical low and ultralow sidelobe radiation
patterns.

Fig. 27 is in qualitative agreement with both the Hansen paper and the
Hacker and Schrank paper. Fig. 27 shows that the first and to a lesser degree
the second sidelobes require a large range to converge, whereas the main beam
and higher order sidelobes form quickly. This is also confirmed qualitatively
by examining the set of drawings of the radiation patterns of the uniform
aperture at various ranges, found in [16]. The error in the level of the
first sidelobe is graphed in [16] as a function of range, and it is shown that
the lower the level of t .e sidelobes, the greater the error in the first
sidelobe (relative to the normalized far field level) at a given range. This
criterion determines the required test range by examining only one point in
the radiation pattern. The directional phase-sensitive MSD criterion extends
the criterion used in [151 and (16] for application at any point over the
entire radiation pattern.

The statement that the 2D2/ range is acceptable for patterns with high
sidelobe levels seems at first to contradict the conclusions of the previously
presented analysis using the phase-sensitive MSD criterion. Using the MSD
criterion, it appears that high sidelobe patterns require relatively large
range to converge to the far field form and so should require large test
ranges, whereas cosine and edge tapered distributions converge quite quickly
with range. This apparent discrepancy can be explained by closely examining
the form of the omnidirectional MSD criterion, and exactly what it indexes.
Although the sidelobes of low sidelobe patterns require a large range to form
properly, they are only a small feature of the radiation pattern. Most of the
radiated power is in the broad main beam. It has been shown that the main
beam forms at relatively short range, and due to this concentration of energy
the errors in the tiny sidelobes do not impact significantly on the
omnidirectional criterion. Thus the predicted range to the outer boundary of
the Fresnel region is biased toward the range at which the main beam is well
formed. In the case of higher sidelobe patterns, less energy is concentrated
in the main beam, so errors in the sidelobe patterns have a larger effect on
the value of the MSD criterion. Because the main beam forms at shorter range
than the sidelobes, even for higher sidelobe patterns, the net effect is that
higher sidelobe patterns require (on a power average) a larger range to
converge to the far field form. References [151 and r16] imply that if one
wishes to measure the far field form of the first sidelobe of low and ultralow
sidelobe patterns, then large test ranges must be used.
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7.0 FURTHER WORK

Further work concerning the specification of the range to the outer
boundary of the Fresnel region could concentrate on a more thorough
investigation of the directional phase-sensitive mean squared difference
criterion. The omnidirectional case resulted in a synthesis equation based on
positive and negative integral contributions over a line. It is clear that in
the directional case this line extends to a plane. However, the form of the
equations does not allow for good intuitive insight into the behavior of a
synthesis equation over this plane. This is because the weighting functions
for the aperture distribution can be considered as the product of three
independent functions: the Fresnel kernel component, the shifting
exponentials, and the convolution of the transformed window function. Further
mathematical manipulation of the criterion using integral operators bears
investigation.

Though the original hypothesis is disproved in the context of the
omnidirectional phase-sensitive criterion, it is possible that the steep slope
features of a superdirective radiation pattern might require a large range to
converge to the far field form, and in this sense perhaps the original
hypothesis could be demonstrated to have some validity. This is suggested by
the convergence of the uniform aperture pattern near the nulls since it is in
this region that the slope of the radiation pattern is relatively large.
Further investigation is necessary using a iperdirective aperture larger than
two wavelengths, since this is the minimum size for which the given Fresnel
approximations are valid (assuming negligible reactive fields at the outer
Fresnel boundary).

The hypothesis that the nulls trace non-radial trajectories through the
Fresnel region should be tested. This could be checked most directly by
determining the exact angular location of the nulls for the uniform aperture
case. Although the nulls may translate only a slight amount in the Fourier
Transform variable ky, this may imply significant translation in real angle
for nulls near the edge of the visible region, because the transformation
between real angle (bearing) e and ky is nonlinear.

8.0 CONCLUSION

The purpose of this investigation was to investigate the extent of the
Fresnel region for the case of aperture antennas, and specifically to test the
hypothesis that a superdirective antenna may exhibit a large range to the
outer boundary of the Fresnel region. The first part of the investigation
centred on describing the nature of superdirective antennas. The second part
of the investigation involved a specification of a rigorous definition of the
outer extent of the Fresnel region, and analyzing the implications of this
criterion.

Fundamental to the concept of superdirective antennas is that the
radiation pattern is defined over an infinite range of complex angles of
propagation, with only the real angles corresponding to the "visible" region.
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A superdirective aperture may be synthesized by mathematically constraining
the radiation pattern over the visible region to have a superdirective shape
(ie. a directivity greater than that of a uniform phase/uniform amplitude
aperture having the same physical dimension). The desired shape is then
decomposed into the sum of orthogonal, aperture limited functions. The
required aperture excitation is then determined from this decomposition. The
phase profile of the resulting aperture distribution is critical in realizing
the superdirective radiation pattern. However, as the directivity of the
specified pattern is increased even slightly above that of a uniform aperture,
the pattern in the invisible region (corresponding to complex angles of
propagation) becomes Large. The literature explains that the large patterns
in the invisible region are indicative of an unrealizable antenna due to large
reactive fields, energy storage around the aperture, and high voltage fields
in the aperture plane. Superdirective antennas are generally unrealizable
because of large currents required in the elements (of an array realization),
and critically close tolerances on element spacing, phasing, and amplitude
excitation.

A rigorous definition of the range to the outer extent of the Fresnel
region was presented. This criterion is based on the normalized mean squared
difference between the complex radiation pattern at a finite range and the far
field pattern. By using a mathematical reformulation of this phase-sensitive
mean squared difference criterion the original hypothesis is disproved in the
context of this criterion, and for at least marginally superdirective
antennas. The notion that the hypothesis is disproved cannot be extended to
the case of strongly superdirective antennas because there exists the
possibility that the range at which the reactive near field criterion is met
could be larger than the predicted range to the outer boundary of the Fresnel
region. There is assumed to be no such inversion of the near field/Fresnel
boundary in applying the phase-sensitive criterion. Also, although aperture
phasing is important to superdirective antennas, this phasing is ignored by
the phase-sensitive criterion (though phasing of the radiation pattern is not
ignored). Polarization effects were concluded to be significant at ranges
within the Fresnel region but to be insignificant at the range (as predicted
by the phase-sensitive criterion) of the outer Fresnel boundary. A
mathematical reformulation of the phase-sensitive criterion allows the range
to the outer boundary of the Fresnel region to be specified, and an
appropriate aperture distribution chosen.

Finally, the application of the mean squared difference criterion to
only a sector of the radiation pattern was considered. Mathematical
manipulation of this directional criterion demonstrated that, when considering
the convergence of the finite range pattern to the far field form over an
observation sector, the aperture phasing is important. A special case of the
directional criterion was applied to a uniform aperture, and it was found that
the radiation pattern near nulls requires a large range to converge to the far
field form. Also, the first and second sidelobes require a relatively large
range to converge, whereas the main beam converges to the far field form at
relatively short range. Higher order sidelobes, like the main beam, converge
relatively quickly. These findings, using the directional criterion, are in
agreement with the literature.

- 76 -



9.0 REFERENCES

[] Booker, H. B., Clemmow, P.C.; "The Concept of an Angular Spectrum of
Plane Waves, and Its Relation to That of a Polar Diagram and Aperture
Distribution"; JIEE, pt. III, vol. 97, January 1950; pp. 11 - 17

[25 Woodward, P. M., Lawson, J. D.; "The Theoretical Precision With Which An
Arbitrary Radiation-Pattern May be Obtained From a Source of Finite
Size"; JIEE, vol. 95, 1948; pp. 363 - 370

[3] Schelkunoff, S. A.; "A Mathematical Theory of Linear Arrays"; Bell
Systems Technical Journal, vol. 22, January 1943; pp. 88 - 107

[41 Riblet, H. J.; "Note on the Maximum Directivity of an Antenna"; Proc.
I.R.E., vol. 36, May 1948; pp. 620 - 624

[5] Rhodes, D. R.; "The Optimum Line Source for the Best Mean-Squared
Approximation to a Given Radiation Pattern"; IEEE Trans. on Ant. and
Prop., July 1963; pp. 440 - 446

[61 Wilmotte, R. M.; "Note on the Practical Limitations in the Directivity
of Antennas";Proc. I.R.E., vol. 36, July 1948; p. 878

[7] Schelkunoff, S. A.; Antennas: Theory and Practice; John Wiley and Sons
Inc., New York, 1952; pp. 195 - 198

[8] Taylor, T. T.; "Design of Line Source Antennas For Nerrow Beamwidth and
Low Sidelobes"; I.R.E Trans. on Ant. and Prop., vol. 3, January 1955;
pp. 16 - 28

[9] Colin, R. E., Rothschild, S.; "Reactive Energy in Aperture Fields and
Aperture Q"; Canadian Journal of Physics, vol 41, December 1963; pp.
1967 - 1979

[101 Rhodes, D. R.; "On the Stored Energy of Planar Apertures"; IEEE Trans.
on Ant. and Prop., vol. AP-14, no. 6;November 1966

[11] Skolnik, M.; Radar Handbook; McGraw-Hill Book Co. Inc., New York, 1970

[12] Jull, E. V.; Aperture Antennas and Diffraction Theory; Peter Peregrinus
Ltd., 1981; pp. 42 - 46

[13] Silver, Samuel; Microwave Antenna Theory and Design; McGraw-Hill Book
Co. Inc., New York, 1949

[14] Balanis, C. A.; Antenna Theory: Analysis and Design; Harper and Row,
Publishers, New York, 1982, Ch. i - 3, Ch. 11 pp. 446 - 486

- 77 -



[15] Hansen, R. C.; "Measurement Distance Effects on Low and Ultralow
Sidelobe Patterns"; IEEE Trans. on Ant. and Prop., vol. AP-32, no. 6,
June 1984; pp. 591 - 593

[161 Hacker, P. S., Schrank, H. E.; "Range Distance Requirements for
Measuring Low and Ultralow Sidelobe Antenna Patterns"; IEEE Trans. on
Ant. and Prop., vol. AP-30, no. 5, September 1982, pp. 956 - 965

- 78 -



APPENDIX A

Discussion of the Invisible Region

Over the visible and invisible regions there is a 1/r range variation in
the electric field strength (see eqn. (49)). In comparing the radiation
patterns over the visible region, this 1/r spatial variation is removed by
multiplying the field expressions by r. However, as shown in Section 2.1,
there is an additional spatial variation of the fields in the invisible
region, of the form:

e- k,(sin2o - 1) r (A-i)

This spatial variation must also be removed when calculating the normalized
mean squared difference between the finite range and far field antenna
patterns. The question arises as to what if any special considerations should
be made in removing this dependence. For instance, although the proper factor
is:

e k4(sin2p - 1) r (A-2)

mathematical consistency demands consideration of the appropriate interval
over which the multiplication should be applied.

Only the fields in the invisible region have this exponential variation
with range, so to include the visible region in the range of this exponential
normalizing factor (eqn. (A-2)) would be to introduce a range variation rather
than remove one. This means that the Fourier Transform of the aperture
distribution does indeed give the radiation pattern independent of range
variation in both the real and invisible regions. Thus, in using the mean
squared difference criterion over the entire radiation pattern, it is
appropriate to use the Fourier Transform of the aperture distribution as the
range-independent radiation pattern.
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APPENDIX B

Definition of the Aperture Distributions

This appendix defines the 16 aperture distributions used to investigate
the criteria for determining the range to the outer boundary of the Fresnel
region.
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1.0

-a/2 0 a/2

1. uniform

1.0

-a/2 0 a/2

2. double cosine

B-2



1.0

-a/2 0 a/2

3. triangle

4. cosine

3- 3



1.0

a/8 a /8

-a/2 0 a/2

5. edge

-1.0

-a/2 0 a/2

6. complement of douhle cosine

B-4



-J 1.0

-a/2 0 a/2

7. notch
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